A NOTE ON THE SUMS OF POWERS OF CONSECUTIVE q-INTEGERS
نویسنده
چکیده
In this paper we construct the q-analogue of Barnes's Bernoulli numbers and polynomials of degree 2, for positive even integers, which is an answer to a part of Schlosser's question. For positive odd integers, Schlosser's question is still open. Finally, we will treat the q-analogue of the sums of powers of consecutive integers.
منابع مشابه
On the alternating sums of powers of consecutive q-integers
In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68
متن کاملq-ANALOGUES OF THE SUMS OF POWERS OF CONSECUTIVE INTEGERS
Let n, k be the positive integers (k > 1), and let Sn,q(k) be the sums of the n-th powers of positive q-integers up to k − 1: Sn,q(k) = ∑k−1 l=0 ql. Following an idea due to J. Bernoulli, we explore a formula for Sn,q(k).
متن کاملA Note on the Alternating Sums of Powers of Consecutive Integers
For n, k ∈ Z≥0, let Tn(k) be the alternating sums of the n-th powers of positive integers up to k − 1: Tn(k) = ∑ k−1 l=0 (−1)l. Following an idea due to Euler, we give the below formula for Tn(k): Tn(k) = (−1) 2 n−1 ∑ l=0 (n l ) Elk n−l + En 2 (
متن کاملOn a Congruence Modulo n Involving Two Consecutive Sums of Powers
For various positive integers k, the sums of kth powers of the first n positive integers, Sk(n) := 1 k+2k+ · · ·+nk, are some of the most popular sums in all of mathematics. In this note we prove a congruence modulo n3 involving two consecutive sums S2k(n) and S2k+1(n). This congruence allows us to establish an equivalent formulation of Giuga’s conjecture. Moreover, if k is even and n ≥ 5 is a ...
متن کاملA Note on Sums of Powers
We improve a result of Bennett concerning certain sequences involving sums of powers of positive integers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005